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1 Introduction
This document provides a detailed specification of the TSO-CC protocol [EN14].

2 Storage Requirements
Table 1 is a summary of storage requirements and introduces parameter names and literals used in
the protocol description.

3 Assumptions & Definitions
1. The protocol requires distinguishing valid and invalid timestamps (b.ts). In the following

specification ∅ is used to denote an invalid entry. In our implementation, we use 0 to denote
an invalid timestamp, which means the smallest valid timestamp is 1.
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Table 1: Coherence specific storage requirements
Per node Per line b

L1
1. current timestamp, Bts bits

2. write-group counter, Bwrite−group bits

3. current epoch-id, Bepoch−id bits

4. timestamp-table ts_L1[n], n ≤ CL1 en-
tries

5. epoch-ids epoch_ids_L1[n], n = CL1 en-
tries

6. timestamp-table ts_L2[n], n ≤
CL2−tiles entries (for SharedRO)

7. epoch-ids epoch_ids_L2[n],
n = CL2−tiles entries (for SharedRO)

1. number of accesses b.acnt, Bmaxacc bits

2. last-written timestamp b.ts, Bts bits

L2

1. last-seen timestamp-table ts_L1[n], n =
CL1 entries

2. epoch-ids epoch_ids_L1[n], n = CL1 en-
tries

3. current timestamp, Bts bits (for
SharedRO)

4. current epoch-id, Bepoch−id bits (for
SharedRO)

5. increment-timestamp-flags, 2 bits (for
SharedRO)

1. timestamp b.ts, Bts bits

2. owner (Exclusive), last-writer (Shared),
coarse vector (SharedRO) as b.owner,
dlog(CL1)e bits

2. DataS, DataX and Data messages are expected to carry data.

3. A receive message action is of the format: source?Message.

4. A send message action is of the format: destination!Message.

5. A batch transition of all lines in states State1, State2, ... to state NextState is abbreviated tr_all
{State1, State2, . . . } NextState.

4 Protocol State Table
The state transition tables can be found in Tables 2 and 3. The following sections provide notes
about events in the Tables marked by the respective raised number.
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4.1 Private Cache Controller
1. We can’t just set the state to Invalid, as the directory might have gotten a read and forwarded

the request to us. So we must write back, and wait for Ack to ensure that the line propagated
to the L2, and thus no more Fwd requests are outstanding.

2. If Bwrite−group = 0, in the presence of non-infinite timestamps, the comparison operator cannot
be <, as it would violate correctness. This is due to how timestamp resets are dealt with in the
L2 (see §5.3).

3. Must reset timestamp, in case the line has since been evicted from L2 and we obtain it in
Exclusive. If this is the case, the line may have been modified by another node; now, if we get a
FwdX request, the old timestamp must not be forwarded.

4.2 Directory Controller
1. Reuse the block’s b.owner bits to maintain a superset of SharedRO sharers: each bit is a pointer

to d CL1
dlog(CL1)ee sharers.

2. Checking if a line’s timestamp in the L2 is decayed. In order to allow Shared blocks which have
not been written to in a long time to transition to SharedRO, we can use the timestamp b.ts
and compare against the owner’s entry in the last-seen table: check if a fixed period has passed
between the last-seen timestamp and when the line was updated according to b.ts.

ts_L1[b.owner] > 2Bts−n ∧ b.ts ≤ ts_L1[b.owner]− 2Bts−n
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Table 2: TSO Coherence private (L1) cache controller – table of states and events.

Read Write Evict src?DataS(state,� owner, ts)
src?DataX(owner,� ts, ackc)

src?FwdS(dst) src?FwdX(dst) src?Ack src?InvRO

Invalid dir!GetS;
b.ts← ∅;
→ WaitS;

dir!GetX;
update b.ts;
→ WaitX;

dir!AckRO;

Exclusive hit; hit;
update b.ts;
→ Modified;

dir!PutE;
→ WaitEI;1

dst!DataS(SharedRO,� self, b.ts);
dir!Ack(0);
→ SharedRO;

dst!DataX(self,� b.ts, 1);
→ Shared;

dir!AckRO;

Modified hit; hit;
update b.ts;

dir!Data(b.ts);
→ WaitMI;

dst!DataS(Shared,� self, b.ts);
dir!Data(b.ts);
→ Shared;

dst!DataX(self,� b.ts, 1);
→ Shared;

dir!AckRO;

Shared if b.acnt < maxac then
increment b.acnt;
hit;

else
dir!GetS;
b.ts← ∅;3
→ WaitS;

endif

dir!GetX;
update b.ts;
→ WaitX;

→ Invalid; dir!AckRO;

SharedRO hit; update b.ts;
dir!GetX;
→ WaitX;

→ Invalid; dir!AckRO;
→ Invalid;

WaitS stall; stall; stall; copy_data; hit;
reset b.acnt;
if state = Exclusive then
dir!Ack(0);

endif
→ state;

dir!AckRO;
→ WaitSROI;

WaitSROI stall; stall; stall; copy_data; hit;
reset b.acnt;
if state = Exclusive then
dir!Ack(0);

elif state = SharedRO then
→ Invalid;

endif
→ state;

dir!AckRO;

WaitX stall; stall; stall; copy_data; hit;
reset b.acnt;
dir!Ack(ackc);
→ Modified;

dir!AckRO;

WaitEI stall; stall; stall; dst!DataS(SharedRO,� self, b.ts);
→ Invalid;

dst!DataX(self,� b.ts, 0);
→ Invalid;

→ Invalid; dir!AckRO;

WaitMI stall; stall; stall; dst!DataS(Shared,� self, b.ts);
→ Invalid;

dst!DataX(self,� b.ts, 0);
→ Invalid;

→ Invalid; dir!AckRO;

DataS� @ WaitS, WaitSROI
DataX� @ WaitX

if owner = ∅ ∧ ts 6= ∅ then
if ts_L2[src] < ts then

ts_L2[src]← ts;
tr_all {Shared} Invalid;
endif

. . .

. . .
elif owner 6= self ∧ (ts = ∅ ∨ ts_L1[owner] ≤ ts) then2
if ts 6= ∅ then
ts_L1[owner]← ts;

endif
tr_all {Shared} Invalid;

endif
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Table 3: Directory (L2) controller – table of states and events.

p?GetS p?GetX p?Data(ts) p?Ack(c) p?PutE p?AckRO
Invalid p!DataS(Exclusive, ∅, ∅);

b.owner← p;
b.ts← ∅;
→ WaitE1;

p!DataX(∅, ∅, 0);
b.owner← p;
b.ts← ∅;
→ WaitE1;

Uncached p!DataS(Exclusive, b.owner, b.ts);
b.owner← p;
b.ts← ∅;
→ WaitE1;

p!DataX(b.owner, b.ts, 0);
b.owner← p;
b.ts← ∅;
→ WaitE1;

Exclusive b.owner!FwdS(p);
tbe.sharers← {p};
→ WaitS;

b.owner!FwdX(p);
b.owner← p;
b.ts← ∅;
→ WaitE2;

copy_data;
p!Ack;
b.ts← ts;
→ Uncached;

p!Ack;
→ Uncached;

Shared if expired b.ts ∨ decayed b.ts then2
b.owner← {p};
update b.ts;
p!DataS(SharedRO, ∅, b.ts);
→ SharedRO;

else
p!DataS(Shared, b.owner, b.ts);

endif

p!DataX(b.owner, b.ts, 0);
b.owner← p;
b.ts← ∅;
→ WaitE1;

SharedRO p!DataS(SharedRO, ∅, b.ts);
b.owner← b.owner ∪ {p};1

dst← {q | q ∈ b.owner ∧ q 6= p};
dst!InvRO;
tbe.need_acks← |dst|;
b.owner← p; → WaitEn;

WaitE1 stall; stall; if p 6= b.owner then
→ Exclusive;

else
copy_data;
p!Ack;
b.ts← ts;
→ WaitU1;

endif

→ Exclusive; if p 6= b.owner then
→ Exclusive;

else
p!Ack;
→ WaitU1;

endif

WaitE2 stall; stall; if p 6= b.owner then
→ WaitE1;

else
copy_data;
p!Ack;
b.ts← ts;
→ WaitU2;

endif

if c = 1 then
→ Exclusive;

else
→ WaitE1;

endif

if p 6= b.owner then
→ WaitE1;

else
p!Ack;
→ WaitU2;

endif

WaitU1 stall; stall; → Uncached; → Uncached; → Uncached;
WaitU2 stall; stall; → WaitU1; if c = 1 then

→ Uncached;
else
→ WaitU1;

endif

→ WaitU1;

WaitEn stall; stall; tbe.need_acks−−;
if tbe.need_acks = 0 then
b.owner!DataX(∅, b.ts, 0);
b.ts← ∅;
→ WaitE1;

endif
WaitS stall; stall; copy_data;

b.ts← ts;
→ Shared;

b.owner← tbe.sharers ∪ {p};
update b.ts;
→ SharedRO;

b.owner← tbe.sharers;
update b.ts;
→ SharedRO;
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5 Additional Rules & Optimizations
The following is a list of additional rules and optimizations, which have an impact on both L1 and
L2 controllers; this completes the full protocol description.

5.1 Cache inclusivity & evictions
Evictions from the L2 are omitted from the transition table; the following must hold: upon eviction
of lines from the L2, inclusivity must be maintained for lines which are tracked by the L2 (Exclusive
and SharedRO).

5.2 Timestamp table size relaxations
The L1’s timestamp-tables ts_L1 and ts_L2 do not need to be able to hold as many entries as there
are respective nodes. Applying an eviction policy to evict entries from the timestamp-tables allows
to have a reduced-size timestamp-table.

5.3 Effect of L1 timestamp update
To update a timestamp in the L1 means assigning the locally maintained timestamp to the line, and
also increment this timestamp based on either of the following policies:

1. Always (write-group = 1).

2. Write-groups: If constant number of writes falling under the same timestamp reached.

Timestamp overflows in the L1 are dealt with sending out a TimestampReset broadcast to L1s and
L2 tiles:

1. Each L1 invalidates ts_L1[src] on receiving a TimestampReset.

2. Every L2 tile must also maintain a table ts_L1 of last-seen timestamps; ts_L1[src] is updated
on every b.ts← ts, if ts is newer than the existing last-seen timestamp entry from an L1; on
receiving a TimestampReset the respective entry is invalidated. The table of last-seen timestamps
must be able to hold, unlike the L1’s timestamp-tables, the full list of timestamps of every
possible L1.

3. The L2 will assign a response message b.ts if the last-seen timestamp from the owner is larger
or equal to the line’s timestamp (not expired), the smallest valid timestamp (∅ is valid, but
degrades performance) otherwise. Similarly for all L1 data messages by comparing against L1’s
own timestamp.

5.4 Effect of L2 timestamp update
To update a timestamp in the L2 (for SharedRO) means assigning the L2-local timestamp to the line
and incrementing the timestamp under the following conditions:

• from-Invalid, check against in WaitS to SharedRO transition: after a L2 eviction of a dirty line;
after a GetS event in Uncached where b.ts 6= ∅ before resetting b.ts.

• from-Shared, check against in Shared to SharedRO transition: after a block transitions to Shared.

Maintain a bit for each from-condition to signify if the timestamp should be incremented on the
next update or not, resetting all bits after the increment was performed.
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In essence, the L2’s timestamp should always be increment after a transition which can lead to a
block ending up in the SharedRO state, but need not actually be incremented until the first block
transitions to SharedRO.
It is possible to use only one bit for all conditions, but this would cause unnecessary timestamp

increments when a cache line transitions to SharedRO based on the not-modified rule, as transitions to
Shared are quite common, but Shared to SharedRO may not be, therefore it makes sense to maintain
extra bits for each observed transition that may lead back to a SharedRO state, but only check the
condition at the appropriate nearest transition to SharedRO.
To abstract the condition when to increment a L2-timestamp further (define → as the happens-

before relation): if a set of writes W → set of transitions T that can cause likely transitions R to
SharedRO, but we can not keep track of which blocks are affected, the system should remember that
T happened so that upon the first transition in R we can allow L1s to deduce W →+ R. For two
timestamps t and t′, if t < t′ then W→ T→ R→W′ → T′ → R′; in order to make visible all writes
from W′ the L1 needs to self-invalidate on R′, if the largest timestamp value from the L2 it has seen
is only t.

Dealing with timestamp overflows:

1. Timestamp overflows in the L2 are dealt with sending out a TimestampReset broadcast and
each L1 resetting ts_L2[src]. To not send invalid timestamps, like in §5.3, the L2 will assign a
response message b.ts if the current L2-local timestamp is larger or equal to the line’s timestamp,
the smallest valid timestamp (∅ is valid, but degrades performance) otherwise; in case the
smallest valid timestamp is used, the next timestamp assigned to a line after an overflow must
always be larger than the smallest valid timestamp.

2. In a NUCA architecture, it will be necessary to either propagate all increments to the L2-local
timestamp across all tiles, or each L2 tile maintains its own timestamp, and the L1s maintain a
ts_L2 entry per tile or cluster of tiles in a separate table.

5.5 TimestampReset races
To resolve TimestampReset races, without requiring the sender of a TimestampReset to wait for acks,
if we can assume a bounded time on message propagation delay:

1. Every node in the system (L1s and L2 tiles) maintains an epoch_id, which is set to a value
different than the previous value on sending a TimestampReset; the TimestampReset message
contains the new epoch_id. The number of bits required per epoch_id must be large enough
to eliminate the probability of having more than one TimestampReset message with the same
epoch_id in-flight, but small enough to satisfy storage requirements.

2. The L1s maintain a table of epoch_ids with entries for every L1 and L2 tiles in the system.

3. The L2 tiles each maintain a table of epoch_ids with entries for every L1.

4. On receiving a TimestampReset message, the sender’s entry in the respective timestamp-table
is invalidated but the epoch_ids entry for the sender is updated with the epoch_id that was
received along with the TimestampReset message.

5. An epoch_id is sent with every Data, DataS and DataX message:
• If the message originates from an L1, it is the L1s own epoch_id.
• If the message originates from the L2, and owner 6= ∅, the entry in epoch_ids_L1[b.owner]
is assigned.
• If the message originates from the L2, and owner = ∅ ∧ ts 6= ∅, the L2’s epoch_id is
assigned.
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6. The L2 updates epoch_ids_L1[p] along with every b.ts ← ts. If epoch_ids_L1[p] 6= epoch_id,
the last-seen entry in ts_L1 must be updated (timestamp reset).

7. On receiving a DataS or DataX message, before the check for potential acquires, the L1 must
perform the following check:
if ts 6= ∅ ∧ owner 6= self then
if owner 6= ∅ then
if epoch_ids_L1[owner] 6= msg_epoch_id then

invalidate ts_L1[owner];
epoch_ids_L1[owner]← msg_epoch_id;

endif
elif epoch_ids_L2[src] 6= msg_epoch_id then

invalidate ts_L2[src];
epoch_ids_L2[src]← msg_epoch_id;

endif
endif

If a self-invalidation is possible due to seeing a newer value than in the timestamp-tables ts_L1
or ts_L2 respectively, but not having done this check yet, check if the currently held epoch-id
for the line’s source is valid or not, if not, invalidate the entry in the timestamp-table, essentially
performing the same action if a TimestampReset is received.

5.6 Out-of-Order Pipeline Interaction
The description thus far is compatible with a core with a FIFO write-buffer, but without load
speculation (in-order). Introducing load speculation, e.g. via a load-queue (LQ), will require
forwarding invalidations accordingly.

1. Similarly to other conventional eager protocols, any invalidation (self-invalidation, forced miss,
or otherwise) must be forwarded to a LQ.

2. Upon self-invalidation, for all lines in WaitS state, an invalidation must also be forwarded to
the LQ. To avoid a retry still hitting in a stale cache line, we propose either:
a) Adding an additional bit of information to a request from a LQ to denote a retry. In case

of a Read+retry, the protocol forces a miss in the Shared state only. This option offers
potentially higher performance, as the LQ has more information about which instructions
are potentially violated or not, and could still hit (more than once) in a stale cache line if
no violation is detected.

b) Sinking the self-invalidation and transitioning the line to Invalid if the response is Shared
data. A retry will miss and fetch the correct data. This option is more conservative, as
unnecessary invalidations take place; unlike LQ, the coherence protocol has no information
about the order of in-flight instructions.

The above is required to deal with the following case (and its variants): consider the example
in Figure 1. Assume the LQ issues the Read request for 2b first (transition to WaitS), the L2
cache responds with the initial data but the response message remains in transit. Next, 1a and
1b are performed (and committed), and then 2a is issued and receives the value produced by
1b. The acquire at 2a causes self-invalidation. However, the response for 2b arrives with stale
data, causing a TSO violation. The above options prevent this case from manifesting.
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init: x = 0, y = 0
Thread 1 Thread 2
1a. x ← 1 2a. r1 ← y
1b. y ← 1 2b. r2 ← x

Figure 1: Message passing pattern.

6 Changelog
Dec. 17, 2015: Add section §5.6 on out-of-order pipeline interaction. We would like to thank the

authors of CCICheck [Man+15], who informed us that interaction with OOO was not clear;
they further suggested that a corner case with speculative loads (§5.6, case 2.) may exist if not
dealt with. We verified this using McVerSi [EN16] in Gem5: using the regular network model
used, the bug does not manifest as the maximum bound on messages in transit prevents this;
however, the problem manifests (if not dealt with as described) when adding large randomized
interconnect delays.
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